CHAPTER 10: Introduction to the Lithosphere

(u). Soil Pedogenesis


Pedogenesis can be defined as the process of soil development. Late in the 19th century, scientists Hilgard in the United States and the Russian Dukuchaev both suggested independently that pedogenesis was principally controlled by climate and vegetation. This idea was based on the observation that comparable soils developed in spatially separate areas when their climate and vegetation were similar. In the 1940s, Hans Jenny extended these ideas based on the observations of many subsequent studies examining the processes involved in the formation of soils. Jenny believed that the kinds of soils that develop in a particular area are largely determined by five interrelated factors: climate; living organisms; parent material; topography; and time (Figure 10u-1).

Figure 10u-1: The development of a soil is influenced by five interrelated factors: organisms, topography, time, parent material, and climate.


Climate plays a very important role in the genesis of a soil. On the global scale, there is an obvious correlation between major soil types and the Köppen climatic classification systems major climatic types. At regional and local scales, climate becomes less important in soil formation. Instead, pedogenesis is more influenced by factors like parent material, topography, vegetation, and time. The two most important climatic variables influencing soil formation are temperature and moisture. Temperature has a direct influence on the weathering of bedrock to produce mineral particles. Rates of bedrock weathering generally increase with higher temperatures. Temperature also influences the activity of soil microorganisms, the frequency and magnitude of soil chemical reactions, and the rate of plant growth. Moisture levels in most soils are primarily controlled by the addition of water via precipitation minus the losses due to evapotranspiration. If additions of water from precipitation surpass losses from evapotranspiration, moisture levels in a soil tend to be high. If the water loss due to evapotranspiration exceeds inputs from precipitation, moisture levels in a soil tend to be low. High moisture availability in a soil promotes the weathering of bedrock and sediments, chemical reactions, and plant growth. The availability of moisture also has an influence on soil pH and the decomposition of organic matter.

Living Organisms have a role in a number of processes involved in pedogenesis including organic matter accumulation, profile mixing, and biogeochemical nutrient cycling. Under equilibrium conditions, vegetation and soil are closely linked with each other through nutrient cycling. The cycling of nitrogen and carbon in soils is almost completely controlled by the presence of animals and plants. Through litterfall and the process of decomposition, organisms add humus and nutrients to the soil which influences soil structure and fertility. Surface vegetation also protects the upper layers of a soil from erosion by way of binding the soils surface and reducing the speed of moving wind and water across the ground surface.

Parent Material refers to the rock and mineral materials from which the soils develop. These materials can be derived from residual sediment due to the weathering of bedrock or from sediment transported into an area by way of the erosive forces of wind, water, or ice. Pedogenesis is often faster on transported sediments because the weathering of parent material usually takes a long period of time. The influence of parent material on pedogenesis is usually related to soil texture, soil chemistry, and nutrient cycling.

Topography generally modifies the development of soil on a local or regional scale. Pedogenesis is primarily influenced by topography's effect on microclimate and drainage. Soils developing on moderate to gentle slopes are often better drained than soils found at the bottom of valleys. Good drainage enhances an number of pedogenic processes of illuviation and eluviation that are responsible for the development of soil horizons. Under conditions of poor drainage, soils tend to be immature. Steep topographic gradients inhibit the development of soils because of erosion. Erosion can retard the development through the continued removal of surface sediments. Soil microclimate is also influenced by topography. In the Northern Hemisphere, south facing slopes tend to be warmer and drier than north facing slopes. This difference results in the soils of the two areas being different in terms of depth, texture, biological activity, and soil profile development.

Time influences the temporal consequences of all of the factors described above. Many soil processes become steady state overtime when a soil reaches maturity. Pedogenic processes in young soils are usually under active modification through negative and positive feedback mechanisms in attempt to achieve equilibrium.


Principal Pedogenic Processes

A large number of processes are responsible for the formation of soils. This fact is evident by the large number of different types of soils that have been classified by soil scientists (see topic 10v). However, at the macro-scale we can suggest that there are five main principal pedogenic processes acting on soils. These processes are laterization, podzolization, calcification, salinization, and gleization.

Laterization is a pedogenic process common to soils found in tropical and subtropical environments. High temperatures and heavy precipitation result in the rapid weathering of rocks and minerals. Movements of large amounts of water through the soil cause eluviation and leaching to occur. Almost all of the by products of weathering, very simple small compounds or nutrient ions, are translocated out of the soil profile by leaching if not taken up by plants for nutrition. The two exceptions to this process are iron and aluminum compounds. Iron oxides give tropical soils their unique reddish coloring. Heavy leaching also causes these soils to have an acidic pH because of the net loss of base cations.

Podzolization is associated with humid cold mid-latitude climates and coniferous vegetation. Decomposition of coniferous litter and heavy summer precipitation create a soil solution that is strongly acidic. This acidic soil solution enhances the processes of eluviation and leaching causing the removal of soluble base cations and aluminum and iron compounds from the A horizon. This process creates a sub-layer in the A horizon that is white to gray in color and composed of silica sand.

Calcification occurs when evapotranspiration exceeds precipitation causing the upward movement of dissolved alkaline salts from the groundwater. At the same time, the movement of rain water causes a downward movement of the salts. The net result is the deposition of the translocated cations in the B horizon. In some cases, these deposits can form a hard layer called caliche. The most common substance involved in this process is calcium carbonate. Calcification is common in the prairie grasslands.

Salinization is a process that functions in the similar way to calcification. It differs from calcification in that the salt deposits occur at or very near the soil surface. Salinization also takes place in much drier climates.

Gleization is a pedogenic process associated with poor drainage. This process involves the accumulations of organic matter in the upper layers of the soil. In lower horizons, mineral layers are stained blue-gray because of the chemical reduction of iron.



Study Guide


Additional Readings

Internet Weblinks
Citation: Pidwirny, M. (2006). "Soil Pedogenesis". Fundamentals of Physical Geography, 2nd Edition. Date Viewed.


Created by Dr. Michael Pidwirny & Scott Jones University of British Columbia Okanagan

Email Corrections and Suggestions to:

Copyright © 1999-2018 Michael Pidwirny

05/07/2009 9:52